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Abstract

Most pattern recognition tasks can be abstracted to a problem of uti-
lizing comparisons between objects to perform the given inference task.
Often these comparisons are in the form of a distance measure or dis-
similarity. The design of appropriate comparison functions for particular
inference tasks is an area of extensive research, and often rests on ex-
pert knowledge of the problem domain. If the data of interest come from
two different sensors, or consist of very different types of data, a single
dissimilarity may be inappropriate; instead, one might utilize several dis-
similarities, each designed for a specific sensor or data stream. In this
work we consider the problem of fusing information obtained from very
different sensors or sources, encoded through the use of dissimilarity func-
tions. Given n observations from source j, we have an n× n dissimilarity
measure Dj , and we wish to utilize all this information in our inference.
We describe several methods of utilizing these dissimilarity matrices that
are based on embedding the observations into a single space. These meth-
ods optimize either the fidelity (whether the distances in the embedded
space match the original dissimilarities) or the commensurability (whether
matched objects from different sensors are close in the embedded space)
or both. We discuss the properties of these embeddings, apply the idea
to a problem in network modeling, and point out some interesting areas
of further research.

1 Introduction

Consider the problem of fusing the information from two sensors in order to
perform a given inference. In the case we consider in this paper, there will be
two different sets of observations from two different sensors, and we wish to
combine the observations from the two sensors. We will consider only the case
of two sensors, but the multiple sensor case can be analyzed similarly. Much of
the work in this paper has been reported in a number of papers, in particular
Priebe et al. [2010], Marchette [to appear] although we will consider some new
results and provide some new insights into the methodologies.
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Formally, let Ξ be a space, and π0 : Ξ → Ξ0, π1 : Ξ → Ξ1 continuous
maps into two dissimilarity spaces. Recall that a dissimilarity space X is a
space in which a function d : X × X → R is defined with the properties: 1)
d(x, y) ≥ 0; 2) d(x, y) = 0 ⇐⇒ x = y. The maps πi can be considered to be
the measurements from two sensors. Let ρi be embeddings defined on Ξi into
a space X (in this discussion Rd for a fixed d). Throughout this paper we will
assume the embeddings are performed through multidimensional scaling (MDS)
(Borg and Groenen [1997]) without explicitly defining which specific approach
to MDS is used.

Ξ

Ξ1 Ξ0

X = Rd

π1 π0

ϕ

ρ1 ρ0

Let Xn = {x1 . . . , xn} ⊂ Ξ be observations in the original space, and denote
by xji the image of xi under πj : x

j
i = πj(xi). ϕ is an unknown (and possibly

fictitious) “manifold matching” function. Note that we assume we have no way
to observe Ξ directly, we can only observe the image under the πi. We also
assume that we have no idea what the “manifold matching” function ϕ is, and
in fact in many instances of interest, this function may not even exist – it is
only notional. Thus, this work is not aimed at trying to estimate ϕ (although,
see Marchette [to appear]).

Our methodologies will all start with dissimilarities di defined on Ξi. We will
denote by ∆i the n×n inter point dissimilarity matrix on the Ξi portion of X̂n.
An obvious approach is to embed each sensor into a separate space, and then
form the product: essentially forming the union of the features from the two
sensors. This makes no use of any redundancy or correlation of the information
in the two sensors; however, when the sensors are sufficiently different then an
approach like this might well be what is required. We will discuss below some
ways of investigating whether this might be the case.

2 A Separate Embedding Approach

Ξ

Ξ1 Ξ0

Rd Rd

π1 π0

Q
ρ1 ρ0

The idea of this is to define the embeddings ρi independently, then define a
mapping Q that maps the x0j as close as possible to the matching x1j . This is
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usually performed by Procrustes:1

arg min
QTQ=I

‖X̃1 − X̃0Q‖.

We define the fidelity of the embedding in terms of raw stress (see Borg and
Groenen [1997] for discussion of this and other criteria that might be used in
its place). The fidelity measures how well the embedded points match their
respective dissimilarities:

Fk =

n−1∑
i=1

∑
j>i

(∆k
ij − d(x̃ki , x̃

k
j ))2.

It is well known that MDS minimizes the fidelity error.2 Thus, the separate
embedding approach optimizes the fidelity of each embedding separately.This
does not guarantee that the resulting two point sets are commensurate. The
Procrustes embedding is designed to optimize this commensurability, under the
rigid motion constraint, which ensures that the fidelity is retained. We define
the commensurability error as:

C =

n∑
i=1

(d(x̃0i , x̃
1
i ))

2.

In this definition we abuse notation by using the same symbol x̃0i to denote the
image of x̃0i under the Procrustes transformation. This allows us to refer to the
commensurability as a criterion on the ultimate embedded points regardless of
how the embedding is performed.

Similarly, a canonical correlation approach can be used to optimize commen-
surability without regard to fidelity. For the details see Priebe et al. [2010].

3 Joint Embedding

Define ∆λ = λ∆1 + (1 − λ)∆0. The joint embedding approach we consider
utilizes the three inter point dissimilarity matrices, ∆1, ∆0 and ∆λ for a fixed
λ ∈ [0, 1] (usually λ = 1

2 ). Form the 2n× 2n omnibus dissimilarity matrix:

∆ =

(
∆1 ∆λ

∆λ ∆0

)
.

Then use ∆ to define the embeddings.

1For simplicity we are assuming that the dissimilarities are on the same scale, so that no
scaling is required of the Procrustes transformation. We also assume that they are centered,
so that we do not have to translate (although both of these can easily be incorporated in the
Procrustes methodology).

2Different methods of MDS have been developed for minimizing various criteria. As dis-
cussed above we focus on raw stress for ease of exposition.
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It should be noted that this approach assumes that the dissimilarity matrices
are on the same scale. In the separate embedding approach one can incorpo-
rate scale into the Procrustes transformation, but the joint embedding method
should be used on matrices that have been scaled appropriately. How best to
do this is a topic for another time.

We are optimizing:

E =
∑

(d(X0
i , X

0
j )−∆0

ij)
2 +

∑
(d(X1

i , X
1
j )−∆1

ij)
2 +

∑
(d(X0

i , X
1
j )−W )2.

In this, W is taking the place of d(X0, X1) which is unknown, and in some
applications, may not even be meaningful. Note that we impute the diagonal
of W to be 0. Given our notion that matched documents are “the same”, it
is reasonable that their distance should be small, and this choice attempts to
force this. However, we know experimentally that this is not the optimal choice
for the diagonal of W . Clearly the choice of this matrix is an area for future
research.

The diagonal of the third term is the commensurability error. We call the
off-diagonal term the separability error. That is, we also want to ensure that
non-matched pairs are appropriately far apart.

4 How Can This Fail?

Jointly optimizing fidelity and commensurability seems to be an excellent strat-
egy, but one might wonder if there are cases in which it cannot be effective. In
Priebe et al. [2010] is a brief discussion of this in terms of Hausdorff distance.
Consider the case where the spaces are Euclidean and the embeddings πi are lin-
ear projections onto subspaces. The Hausdorff distance between two subspaces
is 2 sin(θ/2), where θ is the canonical angle between the subspaces. Essentially,
this says that if the subspaces are too far apart – orthogonal – the points will
not be commensurate. To turn this around, highly incommensurate points in
the training data are indicators that the embedding approach proposed may be
inappropriate.

5 Experimental Results

We apply the approach, suitably modified, to a problem in modeling random
graphs. The model we investigate is the random dot product graph (RDPG)
model (see Marchette and Priebe [2008]), in which each actor in a social network
has a vector of attributes, and the edge probabilities are a function of the dot
product of these vectors. In this problem we have external measurements related
to these vectors, and wish to use this extra information to improve the model
fit. In this case the joint embedding approach is very well suited, and produces
a gratifyingly large improvement in fit.

The random dot product graph (RDPG) model is a simple model of social
networks that relates attributes of the actors (vertices) to their social relation-
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ships (edges). For each vertex v is given a random vector Xv, and the probability
of an edge between u and v is given by:

P [u ∼ v] = XT
uXv.

The edges are conditionally independent given the X’s. Given a graph G on
n vertices (all graphs will be simple (no self-loops or multiple edges) and undi-

rected), we wish to fit the model: find X̂ that “best” fits the graph. We will
use the convention that X and its estimates are n× d dimensional matrices.

We define best in terms of the Frobenius norm: given the adjacency matrix
A of the graph, minimize

‖A− X̂X̂T ‖22.

Thus, we are considering squared error as our criterion. Note that we can solve
this easily via spectral methods. The optimal solution is available through the
eigenvalues and eigenvectors of A. Note further however that this is not quite
what we want since the diagonal of the adjacency matrix should be ignored. We
thus augment the diagonal with and estimate of the norm of the Xv: it can be
shown that the expected degree of a vertex Edv = (n−1)E‖Xv‖ (this is exactly
analogous to the similar formula for Erdös-Renýı graphs). Define

Ǎ = A+ diag(
dv

n− 1
),

and now minimize
‖Ǎ− X̂X̂T ‖22.

The optimum is found as X̂ =
√

ΛU , where Λ is the diagonal matrix containing
the d largest eigenvalues of Ǎ and U is the n × d matrix formed from the
corresponding eigenvectors.

Now, suppose we observe attributes Y for the vertices that are correlated
with the model parameters X. Can we use these to obtain an improved fit to
the graph? The answer is investigated in the next set of experiments. In all
experiments, n = 100 (the number of vertices in the graph) and we run each
experiment N = 100 times to obtain the box-plots in the Figures below.

Given a d + 1-dimensional vector X, define X− as the d-dimensional vec-
tor consisting of the first d components of X. In our experiments we will take
d = 3. Let p1 = (0.0, 0.4, 0.1, 0.5) and p2 < −(0.6, 0.1, 0.1, 0.1), then in our
experiments half of the vertices are distributed X ∼ Dirichlet(100p1 + 1)−, and
half distributed X ∼ Dirichlet(100p2 + 1)−. These result in small clouds of
points around the centering points pi. Let G ∼ RDPG(X) denote the RDPG
model defined by X. We will consider two choices for Y in the following exper-
iments: 1) Y ∼ Dirichlet(rX + 1) (here r is a parameter corresponding roughly
to the inverse of the variance), 2) Y ∼ Dirichlet(rX + 1)−. So in the second,
the dimension of Y is d′ = 2. In all experiments, we use as error the difference
between the estimated probability and the true: Error = ‖XXT − ZZT ‖22 for
estimate Z.
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Figure 1: RDPG experiments. In increasing darkness of the boxes, these cor-
respond to the original estimate X̂ from the graph alone; the estimate given
by Ỹ alone; the fusion result; the estimate given by the average of X̂ and QỸ ,
with Q the Procrustes transformation to map these together. In the left plot,
d = d′ = 3 and in the right d′ = 2.

Denote by Ỹ the observed value of Y . Given an estimate of X̂ (say using
the above spectral algorithm) we can use the Procrustes transform to define Q

to map X̂ and Ỹ together, giving one estimate as the average: (X̂ +QỸ )/2. Ỹ
gives us a third estimate (ignoring the graph altogether), and a forth is through

the joint embedding as follows. Let B = Ỹ Ỹ T , W = (checkA+B)/2, and form

Σ =

(
Ǎ W
W B

)
.

Treat this as in the spectral algorithm above, obtaining a 2n × d dimensional
matrix, and return the average of the top n vectors with the bottom n vectors
(pairing the ith vector with the (n + i)th). For case 1 above, the results are
shown in Figure 1 (left), and for case 2, in Figure 1 (right). As r increases,
Yv has less and less variance, and as r decreases Yv increases variance, until
at r = 0 Y is uniform in the simplex independent of the corresponding X
value. Note that this approach, while not a dissimilarity approach, is actually
quite similar to the joint embedding approach we discussed above. Classical
multidimensional scaling essentially performs the spectral estimate on a matrix
related to Σ above – a centering of the squared adjacency matrix that moves
from dissimilarity space into dot product space, if you will. Thus, we view this
approach to RDPG as all part of the same set of algorithms.

Note that for case 1, a simple averaging of X̂ and Ỹ is possible (assuming
that we have performed a Procrustes to ensure that these are commensurate)
and this is depicted in the figure as the darkest box. The notches on the boxes
give an idea of significance: if the notches overlap, the two approaches cannot be
considered significantly different. For this particular simulation (and our goal
of investigating the properties of our method) the case r = 1 is the sweet spot:
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Figure 2: Third RDPG experiment. Comparison of the estimate of X using the
graph only (light gray) and the estimate obtained by adding noise to the graph.
See the text for details.

the joint embedding approach is the best by far, and yet the noise on the Ỹ is
so extreme that it is itself a terrible estimate of the model’s vectors.

In the second experiment, we do not have the option of averaging (since we
assume we do not know what combination of the three coordinates of X we
are measuring with Y ) and so we only plot the results for the two individual
approaches and the joint embedding. The results are given in Figure 1 (right).
Clearly the combination of the information is superior to the separate ones.

Note that the joint embedding approach is relatively insensitive to noise –
in fact it seems to ignore the attributes for r = 0. Adding noise can (somewhat
counter-intuitively) sometimes improve estimates, and to some degree that is
what is happening in the r = 1 case.

To better understand this phenomenon, consider Figure 2. We perform the
following experiment: Let both X and Y be drawn uniformly in the simplex,
independently. Thus there is no “signal” in Y . Form the RDPG graph G from
X and let A be its adjacency matrix as above. For λ ∈ [0, 1], form Bλ =

λǍ+ (1−λ)Ỹ Ỹ T . Then use the spectral approach on B to obtain the estimate

X̂λ. We plot the errors of this approach compared to the estimate which uses
Ǎ only (as in the previous plots) in Figure 2. Note first that, as expected, when
λ = 0 the estimate is bad (there is no information about the graph in Bλ and
when λ = 1 the estimates agree perfectly. The interesting part occurs in the
range λ ∈ [0.3, 0.95]. As long as there is some information from the graph,
averaging in this noise improves the estimate. Whether this is because the
binary representation of the probabilities from the adjacency matrix does not
give the algorithm sufficient flexibility to fit the model (all those 0 probability
estimates that should not be 0) or for some other reason is an area for future
research.
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6 Discussion

We have described a method for combining information from two sensors, and
the method easily extends to multiple sensors. We discussed the situations in
which the method does not work, at least not without some modifications or
significant work. This discussion links a measure of comparability of the sensors
– the commensurability of the embedded points – to the ultimate performance
of the inference, and thus provides a useful method for diagnosing when the
algorithm is likely to be applicable and when not.

The joint embedding method is clearly worth considering when the data have
a natural dissimilarity function available, or when the data come in the form
of a dissimilarity matrix (which is often the case in Psychological experiments
and in some Brain mapping experiments). When the data are presented as
features, other methods of fusion immediately suggest themselves and should
not be ignored. Simply forming the product (appending all the features together
into one long vector) and then performing feature selection and dimensionality
reduction is a well-used and time-honored approach, and should always be a
part of our toolkit.

The random graph experiment showed some surprising results. Adding noise
to the graph can improve estimation using the spectral approach, and the joint
embedding provides a natural way to take advantage of this. Further research
is clearly suggested, and this will be one of the major areas in which we will be
involved in the future.
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